Some Results on the Vanishing Conjecture of Differential Operators with Constant Coefficients

نویسنده

  • WENHUA ZHAO
چکیده

In this paper we prove four cases of the vanishing conjecture of differential operators with constant coefficients and also a conjecture on the Laurent polynomials with no holomorphic parts, which were proposed in [Zh3] by the third named author. We also give two examples to show that the generalizations of both the vanishing conjecture and the Duistermaat-van der Kallen theorem [DK] to Laurent formal power series do not hold in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new families of definite polynomials and the composition conjectures

The planar polynomial vector fields with a center at the origin can be written as an scalar differential equation, for example Abel equation. If the coefficients of an Abel equation satisfy the composition condition, then the Abel equation has a center at the origin. Also the composition condition is sufficient for vanishing the first order moments of the coefficients. The composition conjectur...

متن کامل

A Vanishing Conjecture on Differential Operators with Constant Coefficients

In the recent progress [BE1], [Me] and [Z2], the wellknown JC (Jacobian conjecture) ([BCW], [E]) has been reduced to a VC (vanishing conjecture) on the Laplace operators and HN (Hessian nilpotent) polynomials (the polynomials whose Hessian matrix are nilpotent). In this paper, we first show the vanishing conjecture above, hence also the JC, is equivalent to a vanishing conjecture for all 2nd or...

متن کامل

Images of Commuting Differential Operators of Order One with Constant Leading Coefficients

We first study some properties of images of commuting differential operators of polynomial algebras of order one with constant leading coefficients. We then propose what we call the image conjecture on these differential operators and show that the Jacobian conjecture [BCW], [E] (hence also the Dixmier conjecture [D]) and the vanishing conjecture [Z3] of differential operators with constant coe...

متن کامل

New Proofs for the Abhyankar-gujar Inversion Formula and the Equivalence of the Jacobian Conjecture and the Vanishing Conjecture

We first give a new proof and also a new formulation for the Abhyankar-Gujar inversion formula for formal maps of affine spaces. We then use the reformulated Abhyankar-Gujar formula to give a more straightforward proof for the equivalence of the Jacobian conjecture with a special case of the vanishing conjecture of (homogeneous) quadratic differential operators with constant coefficients.

متن کامل

Arno Van Den Essen , Roel Willems And

In this paper we prove four cases of the vanishing conjecture of differential operators with constant coefficients and also a conjecture on the Laurent polynomials with no holomorphic parts, which were proposed in [Zh3] by the third named author. We also give two examples to show that the generalizations of both the vanishing conjecture and the Duistermaat-van der Kallen theorem [DK] to Laurent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009